Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Steroids ; : 109423, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631602

RESUMO

There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged patients, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation epicardial coronary arteries and the coronary microvasculature by fostering the release of vasodilating factors such as nitric oxide and prostacyclin, which appears to be one of the main mechanism of coronary vasodilatation in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens can be prolonged by administration of safe exogenous estrogens and progestins, especially using bioidentical hormones and starting treatment in women early after menopause.

2.
Biochem Pharmacol ; 222: 116049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342347

RESUMO

We previously showed that digitoxin inhibits angiogenesis and cancer cell proliferation and migration and these effects were associated to protein tyrosine kinase 2 (FAK) inhibition. Considering the interactions between FAK and Rho GTPases regulating cell cytoskeleton and movement, we investigated the involvement of RhoA and Rac1 in the antiangiogenic effect of digitoxin. Phalloidin staining of human umbilical vein endothelial cells (HUVECs) showed the formation of stress fibers in cells treated with 10 nM digitoxin. By Rhotekin- and Pak1- pull down assays, detecting the GTP-bound form of GTPases, we observed that digitoxin (10-25 nM) induced sustained (0.5-6 h) RhoA activation with no effect on Rac1. Furthermore, inhibition of HUVEC migration and capillary-like tube formation by digitoxin was counteracted by hindering RhoA-ROCK axis with RhoA silencing or Y-27632 treatment. Digitoxin did not decrease p190RhoGAP phosphorylation at Tyr1105 (a site targeted by FAK), suggesting that RhoA activation was independent from FAK inhibition. Because increasing evidence points to a redox regulation of RhoA, we measured intracellular ROS and found that digitoxin treatment enhanced ROS levels in a concentration-dependent manner (1-25 nM). Notably, the flavoprotein inhibitor DPI or the pan-NADPH oxidase (NOX) inhibitor VAS-2870 antagonized both ROS increase and RhoA activation by digitoxin. Our results provide evidence that inhibition of HUVEC migration and tube formation by digitoxin is dependent on ROS production by endothelial NOX, which leads to the activation of RhoA/ROCK pathway. Digitoxin effects on proteins regulating cytoskeletal organization and cell motility could have a wider impact on cancer progression, beyond the antiangiogenic activity.


Assuntos
Digitoxina , NADPH Oxidases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Digitoxina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Quinase 1 de Adesão Focal/metabolismo , Fosforilação , Movimento Celular , NADPH Oxidases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
3.
Life Sci ; 335: 122242, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952834

RESUMO

AIM: 2-Pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of N-palmitoylethanolamine, exerts anti-inflammatory activity; however, very little is known about the molecular mechanisms underlying this effect. Here, we tested the anti-neuroinflammatory effect of PEA-OXA in primary microglia and we also investigated the possible interaction of the molecule with the Toll-like receptor 4 (TLR4)-myeloid differentiation protein-2 (MD-2) complex. MAIN METHODS: The anti-inflammatory effect of PEA-OXA was analyzed by measuring the expression and release of pro-inflammatory mediators in primary microglia by real-time PCR and ELISA, respectively. The effect of PEA-OXA on the activation of TLR4 signaling was assessed using two stably TLR4-transfected cell lines (i.e., HEK-293 and Ba/F3 cells). Finally, the putative binding mode of PEA-OXA to TLR4-MD-2 was investigated by molecular docking simulations. KEY FINDINGS: Treatment with PEA-OXA resulted in the following effects: (i) it down-regulated gene expression of several pro-inflammatory molecules and the secretion of pro-inflammatory cytokines in LPS stimulated microglia cells; (ii) it did not prevent microglia activation after stimulation with TLR2 ligands; (iii) it prevented TLR4/NF-κB activation triggered by LPS in HEK-Blue™ hTLR4 cells; and (iv) it interfered with the binding of LPS to TLR4-MD-2 complex. Furthermore, molecular docking studies suggested that PEA-OXA could bind MD-2 with a 1:3 (MD-2/PEA-OXA) stoichiometry. CONCLUSION: We show for the first time that the anti-neuroinflammatory effect of PEA-OXA involves its activity against TLR4 signaling, making this molecule a valuable tool for the development of new compounds directed to control neuroinflammation via inhibiting TLR4 signaling.


Assuntos
Inflamação , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/efeitos adversos , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Microglia/metabolismo , Células HEK293 , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
4.
Pharmacol Res ; 197: 106956, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820857

RESUMO

Several immunopharmacological agents are effective in the treatment of cancer and immune-mediated conditions, with a favorable impact on life expectancy and clinical outcomes for a large number of patients. Nevertheless, response variation and undesirable effects of these drugs represent major issues, and overall efficacy remains unpredictable. Males and females show a distinct difference in immune system responses, with females generally mounting stronger responses to a variety of stimuli. Therefore, exploring sex differences in the efficacy and safety of immunopharmacological agents would strengthen the practice of precision medicine. As a pharmacological target highlight, programmed cell death 1 ligand 1 (PD-L1) is the first functionally characterized ligand of the coinhibitory programmed death receptor 1 (PD-1). The PD-L1/PD-1 crosstalk plays an important role in the immune response and is relevant in cancer, infectious and autoimmune disease. Sex differences in the response to immune checkpoint inhibitors are well documented, with male patients responding better than female patients. Similarly, higher efficacy of and adherence to tumor necrosis factor inhibitors in chronic inflammatory conditions including rheumatoid arthritis and Crohn's disease have been reported in male patients. The pharmacological basis of sex-specific responses to immune system modulating drugs is actively investigated in other settings such as stroke and type 1 diabetes. Advances in therapeutics targeting the endothelium could soon be wielded against autoimmunity and metabolic disorders. Based on the established sexual dimorphism in immune-related pathophysiology and disease presentation, sex-specific immunopharmacological protocols should be integrated into clinical guidelines.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Masculino , Feminino , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Autoimunidade
5.
Life Sci ; 333: 122135, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778413

RESUMO

AIMS: Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS: PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS: The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17ß-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE: By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Estrogênios/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estradiol/farmacologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário , Tamoxifeno/farmacologia , MicroRNAs/genética , MicroRNAs/farmacologia , Movimento Celular
6.
J Pharmacol Exp Ther ; 386(3): 288-297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391222

RESUMO

Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17ß-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.


Assuntos
MicroRNAs , Neoplasias , Feminino , Humanos , Células Endoteliais/metabolismo , Epigênese Genética , Estrogênios , Estradiol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , MicroRNAs/genética
7.
Biomed Pharmacother ; 162: 114670, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068331

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) expressed in non-immune cells is involved in immune-mediated tissue damage in the context of inflammatory conditions and tumor immune escape. Emerging evidence suggests soluble (s)PD-L1 as a marker of inflammation. Based on well-established sex-specific differences in immunity, we tested the novel hypotheses that (i) endothelial cell PD-L1 is modulated by inflammatory cytokines and vascular endothelial growth factor (VEGF) in a sex-specific fashion, and (ii) the endothelium is a source of sPD-L1. After exposure of human umbilical vein endothelial cells (HUVECs) to lipopolysaccharide, interleukin (IL)1ß or VEGF for 24 h, total PD-L1 levels were upregulated solely in cells from female donors, while being unchanged in those from male donors. Accordingly, exposure to synovial fluids from patients with inflammatory arthritis upregulated PD-L1 levels in HUVECs from female donors only. Membrane PD-L1 expression as measured by flow cytometry was unchanged in response to inflammatory stimuli. However, exposure to 2 ng/mL IL-1ß or 50 ng/mL VEGF time-dependently increased sPD-L1 release by HUVECs from female donors. Treatment with the metalloproteinase (MMP) inhibitor GM6001 (10 µM) prevented IL-1ß-induced sPD-L1 release and enhanced membrane PD-L1 levels. The anti-VEGF agents bevacizumab and sunitinib reduced both VEGF-induced PD-L1 accumulation and sPD-L1 secretion. Thus, inflammatory agents and VEGF rapidly increased endothelial PD-L1 levels in a sex-specific fashion. Furthermore, the vascular endothelium may be a sPD-L1 source, whose production is MMP-dependent and modulated by anti-VEGF agents. These findings may have implications for sex-specific immunity, vascular inflammation and response to anti-angiogenic therapy.


Assuntos
Antígeno B7-H1 , Citocinas , Humanos , Masculino , Feminino , Citocinas/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio , Inflamação
8.
Eur J Pharmacol ; 945: 175591, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804546

RESUMO

Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.


Assuntos
Etinilestradiol , Receptores de Estrogênio , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Etinilestradiol/farmacologia , Estrogênios/farmacologia , Anticoncepcionais Orais Combinados , Células Endoteliais da Veia Umbilical Humana , Receptores Acoplados a Proteínas G/metabolismo
9.
Biomed Pharmacother ; 152: 113181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35653890

RESUMO

Several mediators including cytokines, growth factors and metalloproteinases (MMP) modulate pathological angiogenesis associated with inflammatory arthritis. The biological factors underlying sex disparities in the incidence and severity of rheumatic musculoskeletal diseases are only partially understood. We hypothesized that synovial fluids (SFs) from rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients would impact on endothelial biology in a sexually dimorphic fashion. Immune cell counts and levels of pro-angiogenic cytokines found in SFs from RA and PsA patients (n = 17) were higher than in osteoarthritis patients (n = 6). Synovial VEGF concentration was significantly higher in male than in female RA patients. Zymography revealed that SFs comprised solely MMP-9 and MMP-2, with significantly higher MMP-9 levels in male than female RA patients. Using in vitro approaches that mimic the major steps of the angiogenic process, SFs from RA and PsA patients induced endothelial migration and formation of capillary-like structures compared to control. Notably, endothelial cells from female donors displayed enhanced angiogenic response to SFs with respect to males. Treatment with the established anti-angiogenic agent digitoxin prevented activation of focal adhesion kinase and SF-induced in vitro angiogenesis. Thus, despite higher synovial VEGF and MMP-9 levels in male patients, the responsiveness of vascular endothelium to SF priming was higher in females, suggesting that gender differences in angiogenic responses were mainly related to the endothelial genotype. These findings may have implications for pathogenesis and targeted therapies of inflammatory arthritis.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Patológica/metabolismo , Fatores Sexuais , Líquido Sinovial/metabolismo , Membrana Sinovial/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
FASEB J ; 36(3): e22140, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107852

RESUMO

Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Quinase 1 de Adesão Focal/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Fosfofrutoquinase-2/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/genética , Glicólise/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Ovarianas/patologia
11.
Cardiovasc Res ; 118(4): 988-1003, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33739385

RESUMO

Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration, and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signalling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signalling pathway inhibition include an increase in arterial pressure, left ventricular dysfunction facilitating the development of heart failure, thromboembolic events including pulmonary embolism and stroke, and myocardial infarction. Sex steroids, such as androgens, progestins, and oestrogens and their receptors (ERα, ERß, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor therapy, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target- and cell-type selectivity likely will open the way to personalized medicine in men and women requiring anti-angiogenic therapy to reduce adverse effects and to improve therapeutic efficacy.


Assuntos
Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/efeitos adversos , Anticorpos Monoclonais/efeitos adversos , Feminino , Humanos , Masculino , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Caracteres Sexuais , Resultado do Tratamento , Fatores de Crescimento do Endotélio Vascular/uso terapêutico
12.
FASEB J ; 34(9): 12768-12784, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32757462

RESUMO

Few studies have explored the mechanisms coupling estrogen signals to metabolic demand in endothelial cells. We recently showed that 17ß-estradiol (E2) triggers angiogenesis via the membrane G-protein coupled estrogen receptor (GPER) and the key glycolytic protein PFKFB3 as a downstream effector. We herein investigated whether estrogenic agents regulate the stability and/or degradation of glycolytic proteins in human umbilical vein endothelial cells (HUVECs). Similarly to E2, the GPER selective agonist G1 rapidly increased PFKFB3 protein amounts, without affecting mRNA levels. In the presence of cycloheximide, E2 and G1 treatment counteracted PFKFB3 degradation over time, whereas E2-induced PFKFB3 stabilization was abolished by the GPER antagonist G15. Inhibitors of selective SCF E3 ubiquitin ligase (SMER-3) and proteasome (MG132) rapidly increased PFKFB3 protein levels. Accordingly, ubiquitin-bound PFKFB3 was lower in E2- or G1-treated HUVECs. Both agents increased deubiquitinase USP19 levels through GPER signaling. Notably, USP 19 siRNA decreased PFKFB3 levels and abolished E2- and G1-mediated HUVEC tubularization. Finally, E2 and G1 treatments rapidly enhanced glucose transporter GLUT1 levels via GPER independent of transcriptional activation. These findings provide new evidence on mechanisms coupling estrogen signals with the glycolytic program in endothelium and unravel the role of USP19 as a target of the pro-angiogenic effect of estrogenic agents.


Assuntos
Endopeptidases/metabolismo , Estradiol/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Fosfofrutoquinase-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos
13.
Front Pharmacol ; 11: 587221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390959

RESUMO

Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17ß-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.

14.
J Med Chem ; 62(21): 9961-9975, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626541

RESUMO

Protectin D1 [neuroprotectin D1 (NPD1), PD1] has been proposed to play a key role in the resolution of inflammation. Aside from its ω-monohydroxylated metabolite, little has been reported on its metabolic fate. Upon NPD1 incubation in HepG2 cells, liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed the formation of two main metabolites, identified as 2,3-dinor-NPD1 and 2,3,4,5-tetranor-NPD1 by comparison with standards obtained through demanding total chemical syntheses. These data represent the first evidence of ß-oxidation occurring in specialized proresolving mediators and show that the biotransformation of NPD1 by human hepatoma cells is extremely rapid and faster than that of leukotriene (LTE4). Unlike LTE4, the main metabolic process occurs from the polar head chain of NPD1. It may limit NPD1 systemic circulation and prevent its urinary excretion, making difficult its detection and quantitation in vivo. Interestingly, tetranor-NPD1, but not dinor-NPD1, maintained the bioactivity of the parent NPD1, inhibiting neutrophil chemotaxis in vitro and neutrophil tissue infiltration in vivo.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Células Hep G2 , Humanos , Cinética , Oxirredução
15.
Endocrine ; 66(2): 360-369, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30993600

RESUMO

PURPOSE: Hormonal status and menopause affect human macrophage function and cardiometabolic risk. In polycystic ovary syndrome (PCOS) patients the cardiometabolic risk increases through mechanisms that are largely unknown. We tested the hypotheses that macrophage activation is influenced by menstrual cycle and that ovarian dysfunction in PCOS patients is associated with altered macrophage inflammatory responses and cholesterol efflux capacity of serum HDL. METHODS: Blood samples were obtained in the follicular and luteal phases from cycling women (n = 10) and on a single visit from PCOS patients with ovarian dysfunction (n = 11). Monocyte-derived macrophage activation and monocyte subsets were characterized ex vivo using flow cytometry. The capacity of HDL to promote cell cholesterol efflux through the main efflux pathways, namely aqueous diffusion, ATP-binding cassette A1 and G1, was also evaluated. RESULTS: Hormone and metabolic profiles differed as expected in relation to menstrual cycle and ovulatory dysfunction. Overall, macrophage responses to activating stimuli in PCOS patients were blunted compared with cycling women. Macrophages in the follicular phase were endowed with enhanced responsiveness to LPS/interferon-γ compared with the luteal phase and PCOS. These changes were not related to baseline differences in monocytes. HDL cholesterol efflux capacity through multiple pathways was significantly impaired in PCOS patients compared to healthy women, at least in part independent from lower HDL-cholesterol levels. CONCLUSIONS: Regular menstrual cycles entailed fluctuations in macrophage activation. Such dynamic pattern was attenuated in PCOS. Along with impaired HDL function, this may contribute to the increased cardiometabolic risk associated with PCOS.


Assuntos
Lipoproteínas HDL/sangue , Macrófagos/metabolismo , Ciclo Menstrual/metabolismo , Monócitos/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adulto , Feminino , Humanos , Ativação de Macrófagos/fisiologia , Adulto Jovem
16.
Biochem Pharmacol ; 154: 414-423, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890142

RESUMO

Clinical and experimental evidence supports a role for cardiac glycosides (CGs) as potential novel anticancer drugs. However, there are no studies reporting the effect of CGs on the inflammatory tumor microenvironment (TME), which plays a central role in tumor progression and invasiveness. We investigated whether digitoxin affects a) specific pathways involved in motility and/or activation of different cell types shaping TME, and b) cancer cell growth and invasiveness in response to TME-associated factors. To test our hypothesis, conditioned media (CM) from polarized macrophages, and apoptotic or non-apoptotic ovarian cancer cells (SKOV3) were tested as chemoattractants for endothelial cells, monocytes and cancer cells. We demonstrated that CM from M1 (LPS/IFNγ) and M2 (IL-4/IL-13) polarized macrophages, which mimic inflammatory TME, increased both HUVEC migration and tubularization. Treatment of HUVECs with digitoxin at concentrations within its plasma therapeutic range counteracted these effects. Digitoxin affected the expression of neither M1 (CD80/CD68) nor M2 (CD206/CD163) activation markers, nor the amount of cell-bound IL-1ß and CCL22. Accordingly, HUVEC migration in response to CM from digitoxin-treated activated macrophages was unchanged. These data point to a direct effect of digitoxin on HUVEC signaling rather than on the modulation of the cytokine profile released from activated macrophages. At variance with what observed for HUVECs, digitoxin did not prevent monocyte migration induced by SKOV3 CM. In addition, digitoxin significantly impaired SKOV3 growth and migration in response to M1 or M2 macrophage CM. Finally, we showed that digitoxin inhibited FAK phosphorylation in SKOV3 but not PYK2 phosphorylation in monocytes, thus providing a molecular mechanism accounting for the observed differential anti-migratory effect. Overall, digitoxin counteracted salient features of the inflammatory ovarian cancer microenvironment, laying the ground for potential digitoxin repositioning as an anticancer drug.


Assuntos
Movimento Celular/efeitos dos fármacos , Digitoxina/farmacologia , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células Cultivadas , Digitoxina/uso terapêutico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral/fisiologia
17.
Mediators Inflamm ; 2018: 2868702, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576743

RESUMO

Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues GG6 and GG9 in primary human blood-derived macrophages as well as the signalling pathways involved. Macrophages differentiated from peripheral blood monocytes for 7 days were activated with LPS or selective Toll-like receptor agonists for 24 h. The effects of test compounds on cytokine production and immunophenotypes evaluated as CD80+/CCR2+ and CD206+/CD163+ subsets were examined by ELISA and flow cytometry. Signalling pathways were probed by Western blot. Curcumin (2.5-10 µM) failed to suppress LPS-induced inflammatory responses. While GG6 reduced LPS-induced IκB-α degradation and showed a trend towards reduced interleukin-1ß release, GG9 prevented the increase in proinflammatory CD80+ macrophage subset, downregulation of the anti-inflammatory CD206+/CD163+ subset, increase in p38 phosphorylation, and increase in cell-bound and secreted interleukin-1ß stimulated by LPS, at least in part through signalling pathways not involving Toll-like receptor 4 and nuclear factor-κB. Thus, the curcumin analogue GG9 attenuated the LPS-induced inflammatory response in human blood-derived macrophages and may therefore represent an attractive chemical template for macrophage pharmacological targeting.


Assuntos
Curcumina/análogos & derivados , Lipopolissacarídeos/farmacologia , Western Blotting , Células Cultivadas , Curcumina/química , Curcumina/farmacologia , Diarileptanoides , Humanos , Imunofenotipagem , Interleucina-1beta/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Front Pharmacol ; 9: 71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520230

RESUMO

Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 µg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

19.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543707

RESUMO

Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERß, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17ß-estradiol can influence the cardiovascular and immune systems.


Assuntos
Estrogênios/metabolismo , Imunidade , Neovascularização Fisiológica , Animais , Feminino , Humanos , Macrófagos/imunologia , Redes e Vias Metabólicas , Receptores de Estrogênio/metabolismo
20.
Br J Pharmacol ; 174(18): 3094-3106, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28688145

RESUMO

BACKGROUND AND PURPOSE: Cardiac glycosides are Na+ /K+ -ATPases inhibitors used to treat congestive heart failure and cardiac arrhythmias. Epidemiological studies indicate that patients on digitalis therapy are more protected from cancer. Evidence of a selective cytotoxicity against cancer cells has suggested their potential use as anticancer drugs. The effect on angiogenesis of clinically used cardiac glycosides has not been extensively explored. EXPERIMENTAL APPROACH: We studied the effect of digoxin, digitoxin and ouabain on early events of the angiogenic process in HUVECs. We determined HUVEC viability, proliferation, migration and differentiation into capillary tube-like structures. We also tested drug activity using an in vivo angiogenesis model. Activation of protein tyrosine kinase 2 (FAK) and signalling proteins associated with the Na+ /K+ -ATPase signalosome was determined by Western blotting. KEY RESULTS: Digitoxin and ouabain (1-100 nM) inhibited HUVEC migration, concentration-dependently, without affecting cell viability, while digoxin induced apoptosis at the same concentrations. Digitoxin antagonized growth factor-induced migration and tubularization at concentrations (1-25 nM) within its plasma therapeutic range. The anti-angiogenic effect of digitoxin was confirmed also by in vivo studies. Digitoxin induced Src, Akt and ERK1/2 phosphorylation but did not affect FAK autophosphorylation at Tyr397 . However, it significantly inhibited growth factor-induced FAK phosphorylation at Tyr576/577 . CONCLUSIONS AND IMPLICATIONS: Therapeutic concentrations of digitoxin inhibited angiogenesis and FAK activation by several pro-angiogenic stimuli. These novel findings suggest a potential repositioning of digitoxin as a broad-spectrum anti-angiogenic drug for diseases where pathological angiogenesis is involved.


Assuntos
Inibidores da Angiogênese/farmacologia , Digitoxina/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Angiogênese/química , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digitoxina/química , Relação Dose-Resposta a Droga , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neovascularização Patológica/metabolismo , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...